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Abstract Unusual cold filaments are uncovered during the spring intermonsoon season in the South
China Sea (SCS) using a suite of satellite observations. They have a width of about 100 km on average and
extend several hundreds of kilometers offshore on the sea surface, providing significant cross-shelf
transport of heat and nutrients. The eastward current associated with mesoscale eddies in spring in the
western SCS found to play an important role in the filament formation by advecting coastal cold waters far
offshore. The meridional location of the cold filament displays considerable interannual variability ranging
between 98N and 188N, which can be attributed to the interannual south-north shift of the eastward current
associated with eddies. It is also found that in the spring, cold filaments have profound effects on the chlo-
rophyll a concentration in the upper ocean as well as the overlying atmosphere. These findings provide
new insights into the role of eddies in cross-shelf exchange and mesoscale air-sea interaction in the margin-
al seas.

1. Introduction

The robust feature of cold filaments, previously also referred to as cold tongues, plumes, or squirts, is that
cold water may extend hundreds of kilometers in narrow bands [Flament et al., 1985]. Cold filaments are
often associated with strong offshore currents, and found to make a significant contribution to the material
exchange between the nutrient-rich coastal water and the oligotrophic open ocean [Washburn et al., 1993].
Cold filaments are frequently seen in the California Current System [Mooers and Robinson, 1984; Strub et al.,
1991], off the coast of Iberia [Barton et al., 2001; Peliz et al., 2004; Meunier et al., 2012], and in the southeast
Atlantic Ocean [Lutjeharms et al., 1991].

The South China Sea (SCS) is a semienclosed sea subject to the dramatic seasonal variation of the East
Asian Monsoon. In winter, the wind forcing over the SCS is dominated by the strong prevailing north-
easterly monsoon, while in summer the winds reverse direction to southwesterly [e.g., Liu and Xie, 1999].
Spring and autumn are transition seasons in which winds switch from northeasterly to southwesterly
and southwesterly to northeasterly, respectively. Cold filaments have been found in the SCS in summer
arising from the eastward ocean current associated with the southwest wind jet [Xie et al., 2003, 2007;
Chen and Wang, 2014]. However, a question remains as to whether cold filaments can exist in the other
seasons?

Using a suite of high resolution satellite products, we found a set of fascinating beard-like cold fila-
ments off the western coastal boundary of the SCS in the spring intermonsoonal season (April and
May), which are somewhat different from the current-jet driven summer cold filaments. The cold fila-
ments during the spring intermonsoon are much narrower and weaker than those in summer. A
snapshot of sea surface temperature (SST) on 17 May 2005 shows three cold filaments: one cold fila-
ment starts at around 148N, 1098E, and extends eastward all the way to 158N, 112.28E (Figure 1a), and
the other two cold filaments occur at around 168N and 12.58N, respectively. Corroborating evidence
for the existence of the three cold filaments is found in satellite ocean color observations (Figure 1b),
which reveal three colocated tongue-shaped, high-chlorophyll a (Chl a) concentration blooms. These
filaments are fascinating and quite beautiful in their complexity. Although some cases of high Chl a
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concentration in narrow bands were found in the SCS during the spring intermonsoon season before
[Lin et al., 2010; Wang and Tang, 2014], there have been no prior reports on the SST signal and no
systematic investigations on these filaments. In this paper, we will statistically analyze the spatial and
temporal features of these unusual spring cold filaments, then explore their underlying formation
mechanisms, and finally discuss their impacts on the atmosphere.

2. Data and Methods

2.1. Data
Multiple sets of satellite data are used, including: (1) the Remote Sensing Systems (RSS, ftp://data.remss.
com/SST/daily_v04.0/mw_ir/) SST daily product with 9 km resolution for the period from 1 January 2003 to
31 December 2013; (2) the MODerate resolution Imaging Spectroradiometer (MODIS, http://oceancolor.gsfc.
nasa.gov/) Aqua 8 day sea surface Chl a concentration with 4 km resolution from January 2003 to May 2015;
(3) the Quick Scatterometer (QuikSCAT, http://data.remss.com/qscat/) and the Advanced SCATterometer
(ASCAT, ftp://ftp.remss.com/ascat/) daily wind data with 0.258 grid for the period from 1 January 2003 to 31
December 2013; (4) the Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO,
ftp://ftp.aviso.oceanobs.com/) daily sea level anomalies (SLA) data with 0.258 grid from 1 January 2003 to 31
December 2013 [Ducet et al., 2000].

The SCS eddy trajectory data are derived from the third release global eddy data set (http://cioss.coas.ore-
gonstate.edu/eddies/). However, only eddies with lifetimes of 4 weeks or longer are retained in this data
set. The eddy positions within their trajectories are recorded at 7 day time intervals. A detailed description
of the eddy trajectory data set can be found in Chelton et al. [2011].

Figure 1. Snapshot of (a) RSS SST (color, 8C), SLA (contours at 5 cm intervals), geostrophic current anomalies (gray vectors). The three
anticyclonic (cyclonic) eddies are labeled as A1 (C1), A2 (C2), and A3 (C3). (b) MODIS Aqua sea surface Chl a concentration (color, mg m23)
and sea surface wind vectors on 17 May 2005. In Figure 1b, HI: Hainan Island, XI: Xisha Islands, and VN: Vietnam.

Journal of Geophysical Research: Oceans 10.1002/2016JC012353

LI ET AL. SPRING COLD FILAMENT IN THE SCS 763

http://ftp://data.remss.com/SST/daily_v04.0/mw_ir
http://ftp://data.remss.com/SST/daily_v04.0/mw_ir
http://oceancolor.gsfc.nasa.gov/
http://oceancolor.gsfc.nasa.gov/
http://data.remss.com/qscat/
http://ftp://ftp.remss.com/ascat
http://ftp://ftp.aviso.oceanobs.com
http://cioss.coas.oregonstate.edu/eddies/
http://cioss.coas.oregonstate.edu/eddies/


2.2. Model
A simple mixed layer model [Qu, 2001] is used to investigate the formation mechanisms of the cold fila-
ments. The model is based on the mixed layer temperature equation [Wang et al., 2012; Sun et al., 2016],
except that only the geostrophic component of the advection of mixed layer temperature is included. Con-
sequently, the equation for the mixed layer temperature tendency is
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1vg
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� �

where T is the SST or the mixed layer temperature, t is time; x and y are the conventional Cartesian coordi-
nates, ug and vg are the geostrophic components of ocean velocity in x and y directions, respectively. The
temperature field is initialized with the RSS SST in April averaged from 2003 to 2013, which is linearly inter-
polated onto the grids of AVISO geostrophic currents. The horizontal resolution of the model is 1/48, and
the time step is 1 h. The model is assumed to reach equilibrium once the temperature difference between
two successive time steps is less than 0.18C. In this simple model, air-sea heat exchanges, entrainment at
the base of the mixed layer and horizontal mixing with the surrounding water are not considered.

2.3. Filament Detection
The methodology used for SST or Chl a concentration filament identification is similar to the procedure
described by Haynes et al. [1993] and Cordeiro et al. [2015], which mainly consists of two procedures: first,
the pixels with an SST (Chl a) meridional gradient higher than 0.038C/km (0.001 mg m23/km) are marked on
each SST (Chl a) image, in order to highlight frontal regions. It should be noted that the threshold of 0.038C/
km (0.001 mg m23/km) was reached empirically. Higher threshold values than the currently chosen ones
may overlook some weak filaments. Second, according to the definition of filament, the southern and north-
ern boundaries of the filament can be marked and the mid-latitudes between the two boundaries were
recorded in each 0.258 grid along the filament. Only the filaments originating from the western coast of the
SCS were taken into account in this study.

3. Results

3.1. Observation of the Cold Filaments
To understand the general features of the springtime cold filaments, Figure 2a shows the cold filaments
identified from the daily RSS SST images during April and May. This period is during the SCS monsoon tran-
sition time from winter northeasterly winds to summer southwesterly winds. The statistical analysis is over
the years 2003 to 2013. The cold filaments are observed on a total of 229 days, which is roughly 34.1% of
the total days of the spring intermonsoon period. The cold filaments occur between 108N and 178N, and
extend several hundreds of kilometers from the western coastal boundary to the open ocean. The cold fila-
ments are usually accompanied by high Chl a concentration phytoplankton blooms. The filaments derived
from the high Chl a concentration zone also appear in similar regions (Figure 2b), which suggests that there
may be a more general relationship between changes of SST and Chl a in the filament regions. The spatial
correlation between SST and Chl a concentration in cold filament bands is relatively high with R2 5 0.33
(Figure 3a). Note that the number of Chl a blooms from MODIS Aqua (64) is significantly less than that from
RSS SST (229) because the temporal resolution for MODIS is 8 days, while that for RSS is 1 day and the satel-
lite images of Chl a blooms are sometimes contaminated/missing due to cloud cover. Due to the discrepan-
cy of time resolution among Chl a (8 days), SST (daily), and wind (daily), the set of locations on Chl a
filaments from 2003 to 2013 was used as the filament regions, and the SST and wind speed data on the
same day were linearly interpolated into the Chl a filament locations for consistency.

Table 1 lists the occurrence date, occurrence frequency, number, length, and strength of the SST cold fila-
ments observed for each year. These results show that the filaments demonstrate significant year to year
variability. Filaments are typically located between 128N and 168N in most years; however, it is important to
note that the locations of cold filaments sometimes display significant meridional shifts. For example, some
filaments in 2003 and 2008 occurred north of 168N, while in 2004 filaments appeared south of 128N. These
three geographical zones can also be clearly seen from Figure 4a: the filaments occur most around the three
latitude bands: 16–188N, 12–168N, and 10–128N, with peak values centered at 17.68N, 14.88N, and 10.58N,
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respectively. Consequently, we classify these filaments into three types from north to south: northward
shifted, normal, and southward shifted, respectively.

We make several composite images based on the filament types. For the northward (southward) shifted
type, we select all the cold filaments cases in the spring of 2008 (2004) (Figures 5a and 5c). The locations of
the cold filaments for these two types and their corresponding SLA maps are quite different from the nor-
mal type, for which we use the composites in 2007 as typical (Figure 5b). For the northward (southward)
shifted type, the cold filament moves about 38 northward (28 southward) from the location of the normal
type. It should be noted that two or all three types of cold filaments can occur in a single year. For example,
two cold filaments appear simultaneously around 14.58N and 118N in the composite map in 2012. These
intriguing filaments appear in the SCS in the spring intermonsoon season with very different characteristics
from those found in summer, when only a strong and wide filament appears in a single year.

3.2. Dynamic Linkage Between Cold Filaments and Eddies
To investigate the dynamics of cold filament formation in the spring intermonsoon season, we examined
daily images of SST, SLA, and sea surface winds. The snapshot on 17 May 2005 (Figure 1a) suggests that
cold filaments in the western SCS could be associated with the eastward currents on the joint flank between

Figure 2. (a) Distribution of springtime cold filaments in the western SCS for 2003–2013 derived from the daily RSS SST images. (b) Distri-
bution of phytoplankton blooms derived from the MODIS Aqua 8 day sea surface Chl a concentration images. In Figure 2b, the colorful rib-
bons represent the values of Chl a concentration in phytoplankton blooms relative to the spring climatology of Chl a concentration shown
by the background color.

Figure 3. Scatterplots of (a) SST anomalies versus Chl a concentration anomalies with best fit linear regression and (b) SST anomalies ver-
sus wind speed anomalies with best fit linear regression in the regions of the Chl a filaments from 2003 to 2013.
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an anticyclonic eddy and a cyclonic eddy, northern flank of an anticyclonic eddy, or southern flank of a
cyclonic eddy. Figures 5a–5d show the composites for 2008, 2007, 2004, and 2012, corresponding to north-
ward shifted, normal, southward shifted, and mixed type filaments, respectively. All of them demonstrate
that an eastward current associated with eddies always exists where there is an cold filament, strongly sug-
gesting that the eastward current in the western SCS may have an important role to play for the formation
of cold filaments.

To verify this hypothesis, we followed the life cycle of cold filaments from 21 April 2006 to 12 May 2006.
Figure 6a shows the time-latitude evolution of the SST anomalies and the zonal geostrophic velocity anom-
alies at 109.58E for this time period. As can be seen, there is a strong eastward current with a magnitude of

Table 1. Statistics of the Cold Filaments Identified in the Western SCS in April and May From 2003 to 2013 Based on the Daily RSS SST
Images

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

No. 30 26 31 42 22 13 32 26 22 41 16
P 49.2% 42.6% 50.8% 68.9% 36.1% 21.3% 52.5% 42.6% 36.1% 67.2% 26.2%
T_first 04–08 04–14 04–22 04–01 04–19 04–04 04–16 05–06 04–27 04–27 05–15
T_last 05–31 05–29 05–20 05–12 05–30 04–16 05–30 05–31 05–28 05–31 05–30
<L> 486.2 285.4 286.0 338.4 347.6 234.0 332.0 362.7 280.0 420.1 358.7
Max(L) 844.6 403.1 431.4 593.5 590.5 386.5 604.8 618.8 501.6 599.4 698.2
Min(L) 160.8 132.6 180.2 126.2 207.8 158.7 157.1 92.5 113.5 234.1 207.3
<S> 0.88 1.12 0.88 0.51 0.42 0.41 0.36 0.63 0.53 0.68 0.73
Max(S) 1.52 1.96 1.84 1.22 0.87 1.01 1.31 1.48 0.86 1.72 1.18
Min(S) 0.06 0.44 0.14 0.08 0.10 0.01 0.02 0.02 0.23 0.01 0.28

aNote: No.: number of cold filaments; P: occurrence possibility; T_first: date of the first appearance; T_last: date of the last appearance;
L: length of the filament (defined as the curving line distance between a filament’s initial and end positions, in km); S: strength of the fil-
ament (defined as the SST difference between a filament and its climatology, in 8C);<>: average of the group.

Figure 4. (a) Number distributions of the eastward currents (EC, red line), cold filaments (CF, blue line), and phytoplankton blooms (PB, green line) for each 0.25 degree latitude bin (zon-
ally averaged) after 3-points smoothing; (b) locations of the springtime eastward currents in the western SCS from 2003 to 2013; (c) tracks of the anticyclonic eddies (red line) and cyclon-
ic eddies (blue line) in spring. The empty triangle (solid circle) represents the starting (ending) position of each eddy track.
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�30 cm/s in the core of cold fila-
ments. In the spring intermonsoon
season in the western SCS, these
strong eastward currents tend to be
associated with the dipole (an anticy-
clonic eddy to the south and a cyclon-
ic eddy to the north) and occur
between the two eddies (e.g., Figure
1a). To confirm the role of the east-
ward current in the cold filament for-
mation, we apply the mixed layer
model described in section 2.2 which
includes only geostrophic advection.
Figure 7b shows that the cold filament
can be reproduced reasonably well by
the simple mixed layer model,
although the simulated cold filament
is somewhat wider than the satellite
observation (Figure 7c) due to the
coarse resolution of the AVISO SLA
data. The statistical relationship and
the model result both suggest that
geostrophic advection by the eastward
current associated with eddies plays
an important role in the cold filaments
formation.

To investigate the causes of the
meridional shifts of the cold filaments,
we calculate the average locations
of cold filaments and the associated
eastward currents in each year from
2003 to 2013 (Figure 8). It is noted
that the zero vorticity contour of the
dipole is used to present the core loca-
tion of the eastward current [Chen and
Wang, 2014]. The correlation between
the average locations of cold filaments
and the associated eastward currents
reaches 0.84, which is significant at the
95% confidence level. This strong cor-
relation suggests that the cold fila-
ments are tied to the meridional shift
of the eastward currents and associat-
ed eddies on interannual time scales.
We further identify all the eastward
currents associated with cold filaments
from satellite altimeter data (Figure
4b). The number distribution of east-

ward currents versus latitude peaks at three latitudes: 17.28N, 15.28N, and 10.78N (Figure 4a). The spatial distri-
bution of the eastward currents is quite similar to the cold filaments discussed above. The above analysis
suggests that there is a close dynamic linkage between the north-south shift of cold filaments and the east-
ward currents in the western SCS in the spring intermonsoon season. As the eastward current moves north-
ward (southward), the center of the cold filament on its main stream is displaced northward (southward)
along with it.

Figure 5. Composites of RSS SST anomalies (8C, color shading) and SLA (contours
at 5 cm intervals) in (a) 2008, (b) 2007, (c) 2004, and (d) 2012 representing the four
cases: northward shifted type, normal type, southward shifted type, and mixed
type, respectively. Pink thick lines are for the locations of the eastward currents.
Anticyclonic (cyclonic) eddies are labeled with A (C).
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Moreover, by monitoring the tracks of the spring anticyclonic and cyclonic eddies in the western SCS from the
satellite altimeter data (Figure 4c), we found that there are different sources of these eddies for each geo-
graphic zone. In the more northern latitudes (16–208N), the anticyclonic eddies in the western SCS can be
traced back to the southwest of Taiwan Island. After their generation in winter, they propagate southwestward
until reaching the vicinity of Xisha Island (16.58N, 1128E). As for the cyclonic eddies in the more northern lati-
tudes, they are either generated locally or come from the central SCS. In the central latitudes (12–168N), the
anticyclonic and cyclonic eddies are either generated locally or come from a region to the west of Luzon Island
in winter. In the more southern latitudes (5–128N), most of the anticyclonic and cyclonic eddies are locally gen-
erated in the western SCS and propagate relatively short distances. Although the mechanisms of eddy genera-
tion and filament formation need to be further verified, the geographic relationship between the eddy
distributions and the typical locations of cold filaments suggests that the eastward current associated with
eddies is responsible for the cold filament formation in the western SCS in the spring intermonsoon season.

4. Summary and Discussion

The spatial distribution and interannual variability of cold filaments in the western SCS formed during the
intermonsoon season are presented and discussed for the first time using a suite of satellite observations.

Figure 6. Time-latitude diagrams of (a) zonal geostrophic current velocity anomalies (cm/s, contour) and SST anomalies (8C, color shading)
with the meridional mean removed, and (b) wind speed anomalies (m/s, contour) and SST anomalies (8C, color shading) with the meridio-
nal mean removed from 21 April 2006 to 12 May 2006 at 109.58E.

Figure 7. (a) RSS SST (8C) on the grids of AVISO geostrophic currents in April averaged from 2003 to 2013. (b) AVISO geostrophic current anomalies (m/s, vectors) on 3 May 2012 and
snapshot SST (8C, color shading) simulated by the mixed layer model. (c) Satellite observed RSS SST (8C, color shading) and SLA (cm, white contours) on 3 May 2012. In Figures 7b and 7c,
the anticyclonic (cyclonic) eddy is labeled with A (C).

Journal of Geophysical Research: Oceans 10.1002/2016JC012353

LI ET AL. SPRING COLD FILAMENT IN THE SCS 768



These cold filaments are found to
form frequently in the western coastal
boundary of the SCS and extend sever-
al hundreds of kilometers offshore,
bringing cold and nutrient-rich waters
from the western coastal zone into the
interior of the SCS. On average, the
SST anomalies suggest that the meridi-
onal width of cold filament is around
100 km. From the SLA (Figure 6a), the
computed geostrophic current in the
filament is around 30 cm/s. As a conse-
quence, the estimated volume trans-

port of cold water to the interior of the SCS is around 1.8 Sv assuming a vertical scale of 60 m for a cold
filament, which is about 18 times of the average annual discharge of the Pearl River (0.1 Sv).

On interannual time scales, the core location of the cold filament displays considerable meridional shift
ranging from 98N to 188N. The interannual shift of the cold filament can be attributed to the interannual var-
iability of the location of the eastward current associated with eddies [He et al., 2013]. When the eastward
current shifts meridionally, the cold filament shifts in concert, maintaining its connection to the main stream
of the eastward current.

Ocean-atmosphere interaction has been found to be very active in regions of cold SSTs [Lin et al., 2003;
Chow and Liu, 2012], suggesting that the appearance of spring intermonsoonal cold filaments in the west-
ern SCS may have an impact on the atmosphere. Figure 6b shows that the observed wind speed over the
cold filament drops on average by 0.5–1.5 m/s relative to that on either side of the filament. Over the cold
filament bands, the coefficient of determination between the SST and wind data for the period from 2003
to 2013 reaches 0.4 (Figure 3b). This result suggests that the spring cold SST filaments may have profound
effects on the sea surface winds. One possible mechanism is that the cold SST of the filaments cools the
bottom of the atmosphere thereby increasing the stability of the atmospheric boundary layer. This, in turn,
suppresses the near-surface vertical mixing, which would normally bring stronger wind from aloft toward
the lower boundary [Vecchi et al., 2004], and thus reduces the sea surface wind speed. However, to verify
and elucidate this mechanism and uncover the detailed air-sea interaction over the cold filaments, a high
resolution coupled circulation model including advanced mixed-layer physics would be needed, which is
beyond the scope of the present study.

Although the eastward current associated with eddies plays a critical role in the formation and interannual
evolution of cold filament in spring, other atmosphere and ocean processes [Xie et al., 2007] may also con-
tribute to their formation and evolution. As shown in Figure 6b, the cold filament also possesses robust
intraseasonal variability, which may be associated with the atmospheric intraseasonal wind pulses. Further
study is needed to fully understand the source of this variability in the cold filament and the associated
dynamic processes controlling it.
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