
Vol.:(0123456789)1 3

Clim Dyn (2018) 50:339–348 
DOI 10.1007/s00382-017-3611-3

Seasonal prediction and predictability of Eurasian spring snow 
water equivalent in NCEP Climate Forecast System version 2 
reforecasts

Qiong He1,2 · Zhiyan Zuo2,4   · Renhe Zhang2,3 · Ruonan Zhang2 

Received: 1 September 2016 / Accepted: 28 February 2017 / Published online: 29 June 2017 
© Springer-Verlag Berlin Heidelberg 2017

high potential predictability for the Eurasian spring SWE, 
especially the spring SWE over Siberia, with a lead time 
of 1–5  months. For forecasts with lead times longer than 
5  months, the model predictability gradually decreases 
mainly due to the rapid decrease in the model signal.
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1  Introduction

Snow cover is important for modulation of climatic vari-
ability and change (Namias 1985; Ellis and Leathers 1998). 
The presence of snow cover can affect the surface energy 
balance because of snow’s high albedo and low conductiv-
ity. Furthermore, it can influence near-surface thermal char-
acteristics and general atmospheric circulation (Robinson 
and Kukla 1984; Cohen 1994; Gong et al. 2004). Saito and 
Cohen (2003) proposed that snow cover contributes to the 
leading boreal winter mode of the atmosphere. Moreover, 
snow cover can affect the water balance during hydrologic 
processes, thereby influencing human activities (Yasunari 
et al. 2007). Many statistical analyses and numerical exper-
iments have been used to identify the relationship between 
the Eurasian snow cover extent/depth and the rainfall of 
the Indian summer and East Asian monsoons (Yang and 
Xu 1994; Vernekar et al. 1995; Douville and Royer 1996; 
Sankar-Rao et al. 1996; Ferranti and Molteni 1999; Liu and 
Michio 2002; Singh and Oh 2005; Dash et al. 2006; Barnett 
et al. 2010). Wu and Kirtman (2007) found that excessive 
snow cover in western Siberia in spring is accompanied 
by above-normal spring rainfall in Southern China. The 
snow water equivalent (SWE) appropriately represents the 
global snow mass based on the effect of melting water on 

Abstract  The spring snow water equivalent (SWE) over 
Eurasia plays an important role in East Asian and Indian 
monsoon rainfall. This study evaluates the seasonal pre-
diction capability of NCEP Climate Forecast System ver-
sion 2 (CFSv2) retrospective forecasts (1983–2010) for 
the Eurasian spring SWE. The results demonstrate that 
CFSv2 is able to represent the climatological distribution 
of the observed Eurasian spring SWE with a lead time of 
1–3 months, with the maximum SWE occurring over west-
ern Siberia and Northeastern Europe. For a longer lead 
time, the SWE is exaggerated in CFSv2 because the start 
of snow ablation in CFSv2 lags behind that of the observa-
tion, and the simulated snowmelt rate is less than that in the 
observation. Generally, CFSv2 can simulate the interannual 
variations of the Eurasian spring SWE 1–5 months ahead 
of time but with an exaggerated magnitude. Additionally, 
the downtrend in CFSv2 is also overestimated. Because 
the initial conditions (ICs) are related to the correspond-
ing simulation results significantly, the robust interannual 
variability and the downtrend in the ICs are most likely 
the causes for these biases. Moreover, CFSv2 exhibits a 
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the global climate (Souma and Wang 2010). Some stud-
ies have identified the impact of SWE, especially the SWE 
over Eurasia, on the Asian summer monsoon and precipita-
tion (Dong and Valdes 2006; Wu et  al. 2009; Chen et  al. 
2013; Xu and Wu 2012; Zuo et  al. 2011). Zhang et  al. 
(2008, 2013), Zuo et al. (2012) and Zuo and Zhang (2012) 
reported that the springtime SWE over Eurasia has a major 
impact on the spring and summer rainfall in China.

The NCEP Climate Forecast System version 2 (CFSv2) 
has been used for coupled ocean-atmosphere forecasts 
since 2011. This model is an upgraded version of CFSv1 
that includes improvements to the model parameteriza-
tion, initialization system, and resolution (Saha et al. 2014). 
Many studies have focused on prediction of MJO, sea ice 
extent, soil moisture, precipitation and 2-meter tempera-
ture using this system (Wang et al. 2012, 2013; Mo et al. 
2012; Kim et al. 2012; Zuo et al. 2013, 2014). Apart from 
the study of He et al. (2016) which evaluated the prediction 
skill of Eurasian snow cover fraction using CFSv2 refore-
casts, few studies have addressed the prediction capability 
of CFSv2 for snow properties, particularly the Eurasian 
SWE. Considering the great significance of the Eurasian 
spring SWE for the seasonal prediction of the Asian sum-
mer monsoon rainfall, we focus on the prediction skill of 
the Eurasian spring SWE using CFSv2 in terms of clima-
tology, interannual variations, and potential predictability. 
The evaluation may be useful for the community to further 
upgrade the system and improve the simulation ability for 
snow variables. This paper is organized as follows: Sect. 2 
briefly describes CFSv2 SWE reforecasts, the verification 
dataset, and the methods. Section 3 compares the Eurasian 
spring SWE climatology of CFSv2 with observations. Sec-
tion  4 evaluates the prediction capability for interannual 
variations. Section  5 focuses on the potential predictabil-
ity of the Eurasian spring SWE. A summary is provided in 
Sect. 6.

2 � Data and methods

The present study is based on NCEP Climate Forecast 
System version 2 (CFSv2) reforecasts. This model is an 
improved version of CFSv1 and consists of the NCEP 
Global Forecast System (GFS) and the Modular Ocean 
Model version 4 (MOM4) coupled with a two-layer sea ice 
model and the Noah land surface model (Ek et  al. 2003). 
It provides reforecasts for evaluation and calibration of 
model products. CFSv2 produces 9 month reforecasts ini-
tiated every 5  days with 00, 06, 12, and 18 Z cycles for 
the period 1982–2010. We focus on the Eurasian spring 
(March–May) SWE from CFSv2 reforecasts from 1983 to 
2010. The assessment is based on the ensemble consisting 
of 16 members of each month for lead times of 1–9 months 

(LM0–8). For spring—the target predicted season 
(March–May)—0 month lead, the initial conditions of 10, 
15, 20 and 25 February are for March, 12, 17, 22, 27 March 
are for April and 11, 16, 21, 26 April are for May. The 
initial conditions (ICs) of CFSv2 retrospective forecasts 
are from the NCEP Climate Forecast System Reanalysis 
(CFSR) (Saha et al. 2010, 2014). The snow liquid equiva-
lent depth in the CFSR is updated using analysis data from 
the (i) Air Force Weather Agency’s SNODEP model (Kopp 
and Kiess 1996) which uses in situ observations, an SSM/I-
based detection algorithm and its own climatology and (ii) 
from the NESDIS IMS (Helfrich et  al. 2007), which is a 
manually generated snow cover analysis produced once per 
day. IMS snow data were available at 23 km resolution star-
ing in 1997 and at 4 km resolution staring in 2004 (Saha 
et  al. 2010), which determined whether there was snow 
or not where there was disagreement with the SNODEP 
analyses.

The European Space Agency Data User Element Glob-
Snow-2 project is a direct continuation for the GlobSnow-1 
project which aims at creating long-term records of snow 
cover information at the global scale intended for climate 
research purposes. The project is being coordinated by the 
Finnish Meteorological Institute (http://www.globsnow.
info/index.php?page=Home). The GlobSnow-2 (hereafter 
GlobSnow) monthly SWE product is adopted as verifica-
tion dataset that combines satellite-based passive micro-
wave measurements with ground-based weather station 
data in the data assimilation system. It was derived from a 
newly developed assimilation approach that exhibited ben-
efits compared with the typical stand-alone satellite pas-
sive microwave algorithm (Takala et  al. 2011). There are 
evident that the assimilation approach improved the SWE 
estimation accuracy in about 60% of the investigated cases 
across Eurasia compared with the interpolation of weather 
station snow depth values only (Pulliainen 2006). Addi-
tionally, due to the uneven distribution and discontinuity 
in  situ snow data, the long-term records of snow dataset 
with hemisphere scale, i.e. GlobSnow, is a prior option for 
climate research and model evaluation. It should also be 
noted that the GlobSnow SWE product is limited between 
the latitudes of 35°N and 85°N and mountainous regions in 
the GlobSnow products were masked out due to the poor 
algorithm performance in orographically complex regions 
(Takala et  al. 2011). Moreover, the monthly satellite-
derived SWE dataset provided by the National Snow and 
Ice Data Center (NCIDC) is also discussed in the analysis 
(Armstrong et al. 2005).

The statistical methods used in the analysis include 
the temporal correlation coefficient (TCC), pattern cor-
relation coefficient (PCC), root-mean-square error 
(RMSE), and linear trend. Additionally, the present study 
is generally based on the ensemble mean prediction 

http://www.globsnow.info/index.php?page=Home
http://www.globsnow.info/index.php?page=Home


341Seasonal prediction and predictability of Eurasian spring snow water equivalent in NCEP Climate…

1 3

averaged over 16 individual members. The signal-to-
noise ratio (SNR) is defined as the relative magnitude 
of the variance of the ensemble mean to the variance of 
the departure of each member from the ensemble mean, 
which is used to investigate the potential predictability 
of CFSv2 (Peng et al. 2011).

3 � Comparison of spring SWE climatology

First, we evaluate the capability of CFSv2 to forecast the 
climatological Eurasian spring SWE. Figure  1 shows the 
spatial pattern of the Eurasian spring SWE climatology 
from 1983 to 2010 in CFSv2 reforecasts for LM0–8 and 
the GlobSnow verification. The SWE is mainly concen-
trated over northern Eurasia, as demonstrated by a notably 
large center over western Siberia with the maximum SWE 
exceeding 180  mm and a second large center (maximum 

Fig. 1   Climatology of Eurasian 
spring SWE from GlobSnow 
and CFSv2 for LM0–8. The unit 
is mm
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larger than 120 mm) over northeastern Europe. Generally, 
CFSv2 simulates a spatial distribution similar to that of the 
observed climatological Eurasian spring SWE. For exam-
ple, CFSv2 for LM0–2 correctly captures the observed 
spatial distribution and the maximum of the SWE over 
western Siberia and northeastern Europe with a small bias. 
As the lead time increases, the forecasted SWE gradually 
increases, particularly over the two maximum centers. 
However, it reproduces the observed spatial pattern well. 
We calculate the PCCs for 0°–180°E, 40°–80°N of the cli-
matology from the observation and CFSv2 for LM0–8. The 
PCCs are 0.90, 0.90, 0.89, 0.87, 0.85, 0.84, 0.84, 0.84, and 
0.84 for LM0–8, respectively, confirming the strong simu-
lation capability of CFSv2 for the climatological Eurasian 
spring SWE. Noticeably, the PCC gradually decreases for 
longer lead times, indicating relatively larger pattern bias 
for longer lead times. This is consistent with the results 
shown in Fig.  1, in which CFSv2 for LM0–2 exhibits an 
amplitude most similar to the observed Eurasian spring 

SWE climatology and the forecasted SWE increases with 
increasing forecast lead time, especially over the maximum 
center.

Figure  2a quantitatively describes the averaged clima-
tological spring SWE over Eurasia (0°–180°E, 40°–80°N) 
from CFSv2 for LM0–8 (color bars) and the observation 
(black bar). CFSv2 reforecasts simulate the mean Eura-
sian spring SWE more accurately for LM0–2 and gradu-
ally overestimate it for longer lead times. Specifically, 
the observed mean spring SWE over Eurasia is approxi-
mately 49.5 mm, and CFSv2 for LM0–2 has only a −4.2 
to 10.2 mm bias. Note that the underestimated SWE in the 
CFSv2 for LM0 is probably caused by the negative bias of 
the CFSR compared with the GlobSnow (seen in Fig.  3) 
since the model has only integrated for 1  month and the 
effect of initial condition is dominant. As the lead time 
increases, the bias also increases, exhibiting 16.5–28.5 mm 
larger values than the observation for LM3–8. The analy-
sis of the model simulation for the mean Eurasian spring 
2-meter temperature shows that CFSv2 produces more and 
more lower-than-observed surface temperatures (results not 
shown) when the lead time increases. Previous studies have 
demonstrated that the spring snow cover retreat may lead to 
a positive feedback on the surface temperature and that the 
spring snowmelt depends on temperature (Groisman et al. 
1994; Namias 1985). The underestimation of the spring 
2-meter temperature may explain the generally excessive 
SWE of the model. However, the overestimation of the 
SWE may be the cause of the lower-than-observed 2-meter 
temperature in CFSv2. Furthermore, the treatment of the 
snowpack in the snow-related physics of the Noah LSM 
affects the surface skin temperature and in turn depends on 
the surface temperature (Ek et al. 2003). Thus, it is neces-
sary to further improve the parameterization of the snow-
related physics in the Noah LSM.

To specifically examine the model simulation for the 
SWE change in each month during springtime, we further 
calculate the SWE change in March, April, and May rela-
tive to the previous month in the observation (Fig. 2b, left-
most black bar) and CFSv2 for LM0–8 (Fig.  2b, colored 
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bars). The positive values reflect the climatological SWE 
increase, whereas the negative values refer to the climato-
logical SWE decrease. The SWE increases in March and 
decreases in April and May both in the observation and 
CFSv2. However, the observed SWE increase in March is 
quite small (1.06  mm), whereas CFSv2 predicts a higher 
SWE increase (2.12–9.16  mm) for all lead times. The 
observed SWE decrease during April is quite extensive 
(24.60  mm), but CFSv2 predicts only less than half the 
observational SWE decrease (1.02–9.87  mm). The fore-
casted excessive snow accumulation in March and smaller 
snow ablation in April suggest that CFSv2 predicts a later 
start of snowmelt and a smaller snowmelt rate than the 
observation. This is most likely the reason for the fore-
casted excessive spring SWE in the model, which is con-
sistent with the results from Zuo et al. (2014). On the other 
hand, the later start of snowmelt in CFSv2 is probably 
due to the choice of GlobSnow as verification dataset, for 
Mudryk et al. (2015) found that GlobSnow, with maximum 
SWE during late February to early March, peaks earlier 
than other four reanalysis datasets. Thus, the smaller snow-
melt rate in the CFSv2 is probably the prominent cause for 
the overestimated spring SWE.

4 � Prediction of the interannual variability

A critical issue in assessing CFSv2 reforecasts is the choice 
of verification data. In addition to the GlobSnow SWE veri-
fication, we also investigate different SWE data from the 
CFSR and NSIDC. Figure 3 shows the time series of spring 
SWE averaged over Eurasia (0°–180°E, 40°–80°N) from 
CFSv2, GlobSnow, CFSR for 1983–2010 and NSIDC for 
1983–2006. The black, red, and blue solid lines represent 
the SWE from GlobSnow, NSIDC, and CFSR, respectively; 
the dotted lines are CFSv2 reforecasts for LM0–8. All of 
these SWE series exhibit notable interannual variations 
except CFSv2 for LM5–8. Noticeably, the SWE series from 
CFSv2 and CFSR exhibit almost the same variation. The 
correlation coefficients of CFSv2 for LM0–2 and CFSR 
are 0.98, 0.97, and 0.93, indicating a close relationship 
between the model results and the CFSR. This manifests 
in the successful forecasts of CFSv2 but also demonstrates 
the model dependence on the ICs significantly. Considering 
the possible link between the CFSR and CFSv2 products, 

we did not use the CFSR as verification dataset. Further-
more, a correlation analysis indicates that the disagree-
ment between GlobSnow and NSIDC SWE is quite large, 
with the correlation coefficient between them equal to 
0.16. There is evidence that the algorithm that the Glob-
Snow SWE is based on is more accurate than the other cur-
rently available existing algorithms (Luojus and Pulliainen 
2010). The GlobSnow dataset is currently the best global 
SWE product when comparing it with the NSIDC SWE, 
especially because the latter exhibits spurious features dur-
ing snowmelt (Hancock et al. 2013). Thus, we do not use 
the NSIDC SWE as the verification dataset in this paper. In 
a short, we used the GlobSnow product as the verification 
dataset for objective and independent evaluation.

Figure 3 shows that as the lead time increases, the time 
series values of the Eurasian spring SWE in CFSv2 refore-
casts also increase and are generally larger than the Glob-
Snow observation. The prediction capability is calculated 
as the TCC and RMSE compared with the GlobSnow SWE. 
Table 1 gives the TCC and normalized RMSE between the 
anomalies from CFSv2 for LM0–8 and the observations. 
Notably, the TCC for LM0–4 is significant (>90% confi-
dence level) and gradually decreases with increasing lead 
time. The RMSE for LM0–4 is <1 and gradually increases 
to be >1 as the lead time becomes longer. The greater TCC 
and smaller RMSE indicate higher predictive skill, sug-
gesting that CFSv2 has a high predictive capability for the 
Eurasian spring SWE, 1–5 months ahead, with a relatively 
higher correlation with the observation and a moderate 
model bias. When the lead time is longer than 5 months, 
CFSv2 gradually loses the prediction skill for the interan-
nual variations, and the interannual biases between model 
and observation considerably increase.

CFSv2 seems to produce a more significant decreas-
ing trend for LM0–4 than the observed SWE and exhibits 
notable interannual variations. As the forecast lead time 
increases, the SWE interannual variation amplitude in 
CFSv2 tends to damp and no longer exhibits a significant 
trend. To compare the forecasted and observed variability 
and linear trend quantitatively, Fig. 4 illustrates the stand-
ard deviation (Fig.  4a) and linear trend (Fig.  4b) of the 
Eurasian spring SWE from the observation (black bars) 
and CFSv2 for LM0–8 (blue bars). Noticeably, CFSv2 
for LM0–4 exhibits a more significant decreasing trend of 
the Eurasian spring SWE compared with the GlobSnow 

Table 1   Correlation coefficients of the Eurasian spring SWE between GlobSnow and CFSv2 for LM0–8 and the RMSE between them

Bold numbers represent >90% confidence levels (Student’s T-test)

LM0 LM1 LM2 LM3 LM4 LM5 LM6 LM7 LM8

R 0.36 0.33 0.38 0.38 0.4 0.29 0.22 −0.1 −0.1
RMSE 0.92 0.93 0.91 0.92 0.99 1.47 2.19 3.5 3.53
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verification (Fig. 4b). And Affected by the simulated over-
estimated downtrend in the model, it also exhibits overlarge 
variability for LM0–4 (Fig. 4a). Specifically, the observed 
linear trend of the Eurasian spring SWE is −0.10 mm/year. 
However, CFSv2 for LM0–4 predicts a much more signifi-
cant downtrend, with a trend value of −0.37 to −1.01 mm/
year. The standard deviation of the observed Eurasian 
spring SWE is slightly less than 4  mm, whereas that of 
CFSv2 for LM0–4 ranges from 4.62 to 11.5 mm. The stand-
ard deviation of LM5–8 damps to smaller values than the 
observation (1.6–2.61 mm), with the linear trend becoming 
insignificant. Overall, the forecasted variability and trend 
value of the Eurasian spring SWE from CFSv2 for LM0–4 
are significantly greater than those of the observation. As 
the lead time increases, both of them rapidly decrease and 
even approach zero for LM5–8. Some studies have found 
that the results tend to approximate the climatology when 
the models are integrated for a long period (e.g. Peng et al. 
2011), which may partly explain the near-zero interannual 

magnitude of the Eurasian spring SWE for LM6–8 in 
CFSv2.

Previous studies found that snow initialization has a 
large impact on the model prediction skill (Wood and 
Lettenmaier 2008; Shongwe et al. 2007; Jeong et al. 2013; 
Orsolini et al. 2013). Does the Eurasian spring SWE vari-
ation in CFSv2 depend on the ICs? If so, to what extent 
does it depend on the ICs? To answer these questions, we 
report the Eurasian spring SWE standard deviation and lin-
ear trend in the corresponding ICs of the model (red bars in 
Fig. 4a, b). Specifically, the ICs of the spring (March–May) 
SWE in CFSv2 reforecasts for LM0, LM1, LM2, LM3, 
LM4, LM5, LM6, LM7, and LM8 are the SWE from CFSR 
during February–April, January–March, December–Feb-
ruary, November–January, October–December, Septem-
ber–November, August–October, July–September, and 
June–August, respectively. A comparison of the blue and 
red bars in Fig.  4a, b reveals that the forecasted standard 
deviation and trend of the Eurasian spring SWE are almost 
equivalent to those of their respective ICs. Additionally, 
as the lead time changes, the standard deviation and trend 
surprisingly vary with the same change feature. Further-
more, we calculate the correlation coefficients of the spring 
SWE in CFSv2 for LM0–8 and their corresponding ICs to 
explore the probable linkage of the model forecasts and the 
ICs (Fig. 5). Figure 5 shows that CFSv2 for LM0–6 has a 
significantly strong correlation with the ICs (exceeding the 
99% confidence level). In particular, for LM0–4, the TCCs 
are 0.99, 0.98, 0.98, 0.97, and 0.96, indicating a rather high 
dependence of the model results on their ICs 1–5 months 
ahead. When the lead time is longer than 7 months, the cor-
relation gradually becomes insignificant. This suggests that 
the influence of the ICs becomes weaker after integrating 
long enough. Therefore, Eurasian spring SWE in CFSv2 for 
LM0–4 depends on the ICs significantly. We speculate that 
the overestimated interannual variability and the significant 
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negative trend in CFSv2 for LM0–4 are driven by the cor-
responding ICs. Nevertheless, since the CFSR SWE input 
data also include in-situ observed data and the standard 
deviation and trend of SWE from CFSR are much larger 
than those from GlobSnow, the overestimated interannual 
variability and negative trend may be caused by the differ-
ent input datasets and assimilation algorithms between the 
two datasets.

5 � Predictability of the spring SWE

As the lead time increases for the ensemble prediction start-
ing from 16 slightly different SWE ICs, the discrepancies 

between the individual members of the ensemble become 
larger. In other words, the forecast spread would be small 
for a shorter lead time and become larger with increasing 
lead time. The relative magnitude of the ensemble mean 
variance (EMV) to the forecast spread is defined as the 
signal-to-noise ratio (SNR), which is used to analyze the 
potential model predictability. A greater SNR indicates 
a higher potential predictability, and a SNR of less than 1 
reflects no predictability.

Figure 6 shows the spatial SNR of the Eurasian spring 
SWE in CFSv2 for LM0–7. For the shortest lead time of 
1 month, the SNR of Eurasia is almost greater than 2, sug-
gesting a high predictability after integrating for 1 month. 
In particular, the largest SNR is mainly located over 

Fig. 6   SNR of Eurasian spring 
SWE in CFSv2 for LM0–7
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Siberia, with a maximum greater than 8, suggesting that 
CFSv2 has the highest predictability for the spring SWE 
over Siberia compared with other areas of Eurasia. As the 
lead time increases, the area with SNR exceeding one grad-
ually retreats northward, and the SNR becomes smaller. Up 
to a lead time of 5 months, CFSv2 exhibits predictability 
for most parts of Siberia. When the lead time is longer than 
5 months, the SNR is less than one, indicating little predict-
ability of the model for the Eurasian spring SWE. Overall, 
CFSv2 has potential predictability for the Eurasian spring 
SWE for a lead time of 1–5 months. When the lead time is 
longer than 5 months, it tends to lose predictive power for 
the spring SWE for whole Eurasia.

A summary of the lead time dependence of the model 
signal, noise, and SNR is shown in Fig.  7, in which the 
square root of the SWE EMV (signal), forecast spread 
(noise), and their ratio based on the average Eurasia spring 
SWE are illustrated. The SNR is greater than one for 
LM0–4 and becomes less than one for longer lead times, 
which is in good agreement with Fig.  6. Noticeably, the 
square root of EMV declines sharply with increasing lead 
time. For example, the square root of EMV of LM5–8 is 
almost only one-fourth of that of LM0. In contrast, the 
forecast spread stays almost constant, with the square root 
of the internal variance being approximately 3 mm, as the 
lead time increases. This result indicates that the forecast 
spread among the ensemble members grows quickly. The 
square root of forecast spread has increased to 3 mm, even 
when integrating only 1 month, and changes little with the 
increasing lead time. Therefore, we conclude that it is the 
rapid decrease of the EMV together with the constantly 
large forecast spread that causes the damping of the SNR of 
the Eurasian spring SWE in CFSv2 for the longer lead tim.

6 � Summary

The seasonal prediction capability and predictability for 
the Eurasian spring SWE and its evolvement with the lead 
time are evaluated using retrospective forecasts from NCEP 
CFSv2. The simulation ability of long-term climatology, 
interannual variation, and the predictability were assessed. 
Generally, CFSv2 reforecasts have predictive capability and 
predictability in the Eurasian spring SWE 1–5  months in 
advance.

CFSv2 realistically reproduces the observed climato-
logical Eurasian spring SWE pattern, with two large cent-
ers located over Siberia and northeastern Europe. CFSv2 
could correctly simulate the climatological Eurasian spring 
SWE for a lead time of 1–3  months, with a large pattern 
correlation coefficient and a small bias. As the lead time 
increases, the model gradually produces an excessive SWE 
compared with the observation. This is most likely because 
of the later snowmelt initiation and the smaller snowmelt 
rate in the model. Furthermore, because the surface tem-
perature plays an important role in the snowmelt process, 
we also assessed the simulation capability of CFSv2 for 
the mean Eurasian spring 2-meter temperature. The results 
demonstrate that the model predicts a lower-than-observed 
2-meter temperature during springtime. We can speculate 
that it is the underestimation of the 2-meter temperature in 
CFSv2 that hinders the snowmelt initiation and decreases 
the snowmelt rate, eventually leading to the excessive SWE 
in the model. The snowmelt process also affects the surface 
temperature. The interaction between the snow and surface 
temperature is quite complicated, and further studies are 
needed. Overall, it is crucial to understand the snow-tem-
perature relationship and improve the snow-related param-
eterization in the Noah LSM.

CFSv2 reforecasts for LM0–4 could forecast the inter-
annual variation of the Eurasian spring SWE significantly, 
with the correlation coefficients exceeding the 90% confi-
dence level and RMSEs smaller than 1. However, there are 
still biases in the interannual variation compared with the 
observation. For example, the interannual variability and 
decrease trend of the Eurasian spring SWE in CFSv2 for 
LM0–4 are larger than the observed. Because the relation-
ship between the Eurasian spring SWE from the model 
prediction and their corresponding ICs of CFSR are sig-
nificant (exceeding the 99% confidence level for LM0–4), 
the standard deviation and linear trend of them are similar. 
In other words, the robust interannual variability and the 
downtrend in the ICs may be the causes for the overestima-
tion of the interannual variability and decrease trend in the 
model. Thus, in addition to the snow-related parameteriza-
tion, it is also necessary to further improve the initializa-
tion system of CFSv2 for better simulation. The results also 
demonstrate that CFSv2 has a high potential predictability 
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Fig. 7   Lead time dependence of the square root of the SWE EMV 
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for the Eurasian spring SWE for a lead time of 1–5 months, 
with a SNR greater than one over most of Eurasia. CFSv2 
has the highest potential predictability over Siberia. For 
predictions beyond 5 month, the SNR decreases below one, 
indicating no predictability for the Eurasian spring SWE.
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